Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Guo-Cang Wang, Yong-Na Lu, Lin Yu, Hai-Bin Song and Jin-Shan Li*

State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, Weijin Road No. 94, Tianjin, People's Republic of China

Correspondence e-mail:
jinshan_li2001@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.010 \AA$
Disorder in solvent or counterion
R factor $=0.042$
$w R$ factor $=0.097$
Data-to-parameter ratio $=13.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Triphenyl[(2-oxidobenzylideneamino)acetato]antimony (V) dichloromethane solvate

The title compound, $\left[\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}=\mathrm{NCH}_{2} \mathrm{COO}\right) \mathrm{SbPh}_{3}\right]$-$\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or $\left[\mathrm{Sb}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{NO}_{3}\right)\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$, is a mononuclear antimony (V) complex. The asymmetric unit comprises two independent molecules of the complex and two solvent molecules. In both complex molecules, the Sb atoms are in distorted octahedral environments.

Comment

In recent years, we have found that some triarylantimony carboxylates exhibit high in vitro antitumour activity against human tumour cell lines (Li et al., 2001, 2004; Liu et al., 2003; Ma et al., 2001; Yu, Ma, Wang \& Li, 2004), often higher than cis-platin (Yu, Ma, Liu et al., 2004). As an extension of our work on the structural characterization of the antimony complexes, a heterocyclic mononuclear antimony (V) complex is reported here.

(I)

The asymmetric unit of the title compound, (I), is made up of two crystallographically independent $\left[\left(2-\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}=\right.\right.$ $\left.\mathrm{NCH}_{2} \mathrm{COO}\right) \mathrm{SbPh}_{3}$] molecules $(A$ and B) and two dichloromethane molecules (Fig. 1). In both complex molecules, the Sb atom is coordinated by the (2-oxidobenzylideneamino) acetate ligand through an O atom from the carboxylate group, a phenoxide O atom and an imino N atom. The Sb centres have a distorted octahedral geometry, with two O atoms ($\mathrm{O} 1 / \mathrm{O} 2$ in molecule A and $\mathrm{O} 4 / \mathrm{O} 5$ in B), one N atom (N 1 in molecule A and N 2 in B) and one C atom (C16 in molecule A and C49 in B) occupying the equatorial positions, and two benzene C atoms ($\mathrm{C} 10 / \mathrm{C} 22$ in molecule A and $\mathrm{C} 37 / \mathrm{C} 43$ in B) in the axial positions. The three trans angles at the Sb^{V} atom are in the range $159.49(14)-174.70(17)^{\circ}$ for Sb 1 and $159.35(14)-$ $174.63(17)^{\circ}$ for Sb 2 . The other angles subtended at the Sb^{V} atoms are in the range 76.01 (14)-101.55 (16) ${ }^{\circ}$ for Sb 1 and 75.34 (14)-101.26 (16) ${ }^{\circ}$ for Sb 2 (Table 1). Distortions from the ideal geometry may be attributed to the restricted bite angles of the tridentate ligand. None of the five- or six-membered rings formed upon chelation is planar, as seen in the following torsion angles: $\mathrm{Sb} 1-\mathrm{O} 2-\mathrm{C} 9-\mathrm{C} 8\left[-4.7(6)^{\circ}\right], \mathrm{Sb} 1-\mathrm{N} 1-$

Received 24 January 2005 Accepted 1 March 2005 Online 11 March 2005

Figure 1
The two complex molecules of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. Solvent molecules and H atoms have been omitted for clarity.
$\mathrm{C} 8-\mathrm{C} 9\left[13.8(5)^{\circ}\right], \mathrm{Sb} 1-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 6\left[-30.2(6)^{\circ}\right]$ and $\mathrm{Sb} 1-$ $\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 6\left[15.7(7)^{\circ}\right]$ for molecule A, and $\mathrm{Sb} 2-\mathrm{O} 5-\mathrm{C} 36-$ $\mathrm{C} 35\left[14.1(6)^{\circ}\right], \mathrm{Sb} 2-\mathrm{N} 2-\mathrm{C} 35-\mathrm{C} 36\left[-16.3(5)^{\circ}\right], \mathrm{Sb} 2-\mathrm{O} 4-$ $\mathrm{C} 28-\mathrm{C} 33\left[35.4(6)^{\circ}\right]$ and $\mathrm{Sb} 2-\mathrm{N} 2-\mathrm{C} 34-\mathrm{C} 33\left[-8.7(7)^{\circ}\right]$ for molecule B.

Experimental

Potassium (N-salicylideneamino)acetate ($0.43 \mathrm{~g}, \quad 2 \mathrm{mmol}$) in methanol (15 ml) was added dropwise to a solution of triphenylantimony dibromide ($0.36 \mathrm{~g}, 1 \mathrm{mmol}$) in tetrahydrofuran (15 ml). The reaction mixture was stirred at room temperature for 6 h and then evaporated to dryness in vacuo. The resulting solid was recrystallized from dichloromethane-petroleum ether ($3: 2 v: v$) (yield: $0.75 \mathrm{~g}, 61 \%$; m.p. $517-519 \mathrm{~K}$). Analysis found: C $54.06, \mathrm{H} 4.43$, N 2.36%; calculated for $\mathrm{C}_{56} \mathrm{H}_{48} \mathrm{Cl}_{4} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Sb}_{2}$: C 54.67, H 3.93, N 2.28\%. ${ }^{1} \mathrm{H}$ NMR: $\delta 7.89(s$, $1 \mathrm{H}), 6.77-7.59(m, 19 \mathrm{H}), 4.22(\mathrm{~s}, 2 \mathrm{H})$.

Crystal data
$\left[\mathrm{Sb}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{NO}_{3}\right)\right]$
$M_{r}=615.14$
Monoclinic, $P 2_{\mathrm{d}} / c$
$a=21.071$ (6) A
$b=10.944$ (3) A
$c=25.569$ (8) \AA
$\beta=114.109$ (5) ${ }^{\circ}$
$V=5382(3) \AA^{3}$
$Z=8$
$D_{x}=1.518 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 1019
reflections
$\theta=2.8-24.2^{\circ}$
$\mu=1.25 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colourless
$0.22 \times 0.20 \times 0.16 \mathrm{~mm}$
Data collection
Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.726, T_{\text {max }}=0.818$
27059 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.097$
$S=1.08$
9460 reflections
716 parameters
H -atom parameters constrained

9460 independent reflections
6705 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.041$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-25 \rightarrow 22$
$k=-13 \rightarrow 12$
$l=-23 \rightarrow 30$
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0341 P)^{2}\right.$
$+5.6596 P$]
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.005$
$\Delta \rho_{\max }=0.65 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.53$ e \AA^{-3}

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

Sb1-O1	2.041 (3)	Sb2-O4	2.037 (3)
$\mathrm{Sb} 1-\mathrm{O} 2$	2.083 (3)	Sb2-O5	2.089 (4)
Sb1-C16	2.138 (5)	Sb2-C49	2.139 (5)
Sb1-C22	2.147 (5)	Sb2-C37	2.156 (5)
Sb1-C10	2.151 (5)	Sb2-C43	2.162 (5)
Sb1-N1	2.259 (4)	Sb2-N2	2.249 (4)
$\mathrm{O} 1-\mathrm{Sb} 1-\mathrm{O} 2$	159.49 (14)	$\mathrm{O} 4-\mathrm{Sb} 2-\mathrm{O} 5$	159.35 (14)
$\mathrm{O} 1-\mathrm{Sb} 1-\mathrm{C} 16$	101.55 (16)	$\mathrm{O} 4-\mathrm{Sb} 2-\mathrm{C} 49$	101.26 (16)
$\mathrm{O} 2-\mathrm{Sb} 1-\mathrm{C} 16$	98.78 (16)	$\mathrm{O} 5-\mathrm{Sb} 2-\mathrm{C} 49$	99.29 (17)
$\mathrm{O} 1-\mathrm{Sb} 1-\mathrm{C} 22$	90.96 (17)	$\mathrm{O} 4-\mathrm{Sb} 2-\mathrm{C} 37$	87.97 (18)
$\mathrm{O} 2-\mathrm{Sb} 1-\mathrm{C} 22$	90.19 (18)	O5-Sb2-C37	87.87 (18)
C16-Sb1-C22	94.37 (18)	$\mathrm{C} 49-\mathrm{Sb} 2-\mathrm{C} 37$	96.07 (18)
$\mathrm{O} 1-\mathrm{Sb} 1-\mathrm{C} 10$	87.81 (16)	$\mathrm{O} 4-\mathrm{Sb} 2-\mathrm{C} 43$	89.22 (16)
$\mathrm{O} 2-\mathrm{Sb} 1-\mathrm{C} 10$	87.73 (16)	$\mathrm{O} 5-\mathrm{Sb} 2-\mathrm{C} 43$	91.03 (17)
C16-Sb1-C10	94.99 (18)	$\mathrm{C} 49-\mathrm{Sb} 2-\mathrm{C} 43$	94.93 (17)
$\mathrm{C} 22-\mathrm{Sb} 1-\mathrm{C} 10$	170.62 (19)	$\mathrm{C} 37-\mathrm{Sb} 2-\mathrm{C} 43$	168.98 (18)
O1-Sb1-N1	83.71 (14)	$\mathrm{O} 4-\mathrm{Sb} 2-\mathrm{N} 2$	84.11 (14)
$\mathrm{O} 2-\mathrm{Sb} 1-\mathrm{N} 1$	76.01 (14)	$\mathrm{O} 5-\mathrm{Sb} 2-\mathrm{N} 2$	75.34 (14)
C16-Sb1-N1	174.70 (17)	$\mathrm{C} 49-\mathrm{Sb} 2-\mathrm{N} 2$	174.63 (17)
$\mathrm{C} 22-\mathrm{Sb} 1-\mathrm{N} 1$	84.75 (16)	$\mathrm{C} 37-\mathrm{Sb} 2-\mathrm{N} 2$	83.83 (16)
$\mathrm{C} 10-\mathrm{Sb} 1-\mathrm{N} 1$	85.87 (16)	$\mathrm{C} 43-\mathrm{Sb} 2-\mathrm{N} 2$	85.28 (16)

Both dichloromethane molecules are found to be disordered: one (C55/Cl1/Cl2) is disordered over two positions and the occupancies of the two disordered positions were refined to 0.557 (7) and 0.443 (7), while the other molecule $(\mathrm{C} 56 / \mathrm{Cl3} / \mathrm{Cl} 4)$ is disordered over three positions and the occupancies of the disordered positions were refined to 0.414 (4), 0.330 (6) and 0.256 (4). The disorder was treated by restraining the $\mathrm{C}-\mathrm{Cl}$ distance to $1.790(5) \AA$ and the $\mathrm{Cl} \cdots \mathrm{Cl}$ distance to 2.82 (1) A. The displacements of the disordered atoms were approximated to isotropic behaviour. All H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93$ or $0.97 \AA$, and included in the final cycles of refinement using a riding model, with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}$ (parent atom).

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve

metal-organic papers

structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

We thank Professor Hong-Gen Wang for his support in the X-ray diffraction study.

References

Bruker (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (1998). SMART and SAINT. Versions 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.
Li, J. S., Liu, R. C., Chi, X. B., Wang, G. C. \& Guo, Q. S. (2004). Inorg. Chim. Acta, 357, 2176-2180
Li, J. S., Ma, Y. Q., Cui, J. R. \& Wang, R. Q. (2001). Appl. Organomet. Chem. 15, 639-645.
Liu, R. C., Ma, Y. Q., Yu, L., Li, J. S., Cui, J. R. \& Wang, R. Q. (2003). Appl. Organomet. Chem. 17, 662-668.
Ma, Y. Q., Li, J. S., Xuan, Z. A. \& Liu, R. C. (2001). J. Organomet. Chem. 620, 235-242.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Yu, L., Ma, Y. Q., Liu, R. C., Wang, G. C., Li, J. S., Du, G. H. \& Hu, J. J. (2004). Polyhedron, 23, 823-829.
Yu, L., Ma, Y. Q., Wang, G. C. \& Li, J. S. (2004). Heteroatom Chem. 15, 32-36.

